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Abstract

I model the endogenous formation of supply chains in the presence

of correlated disruptions. The incentives of firms to diversify the supply

chain risk are concave in the correlation between the disruption events

among producers of their input goods. This concavity has consequences

for the endogenous formation of the supply chain. If upstream producers

are highly diversified, their disruption risk might be correlated, reducing

diversification incentives for downstream firms. Because of this mecha-

nism, a small increase in the correlation of risk among upstream produc-

ers, due to, for example, offshoring or climate disruptions to economic ac-

tivities, can generate under-diversification throughout the production net-

work. This creates large welfare losses. Finally, I show that firms gaining

more information on their supply chain risk exacerbates such losses.
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In August 2020, hurricane Laura hit one of the world’s largest petrochemical

districts, in the U.S. states of Louisiana and Texas. As polymer producers in the

area were forced to halt production, up to 15% of the country’s polypropene

and polypropene producers were unable to source polymer inputs, which in

turn caused shortages across the economy (Vakil, 2021). This is just one exam-

ple of agglomeration of economic activity increasing the correlation between

disruptions among suppliers of crucial goods for the economy. In face of such

correlated risk, how do downstream producers make sourcing decisions? And,

do these decisions yield supply chains resilient to such correlated disruptions?

In this paper, I study the feedback between the risk of a disruption in sourc-

ing inputs and the endogenous formation of supply chains. A widespread ap-

proach to mitigate risk is to diversify it by multisourcing. This practice con-

sists of procuring the same inputs from multiple suppliers, sometimes redun-

dantly (Zhao and Freeman, 2019). Yet, when deciding how many suppliers to

source from, a firm faces decreasing marginal benefits in risk reduction, be-

cause each additional supplier’s failure to deliver is increasingly likely to be

correlated with that of the firm’s current suppliers. In the presence of marginal

costs of sourcing, such as contractual costs or higher prices, the uncertainty

behind the correlation of a firm’s potential suppliers might induce it to diver-

sify risk less than socially optimal. The wedge between endogenous firm de-

cisions and social optimality arises because downstream firms would be will-

ing to compensate their suppliers for increased diversification of inputs. This

under-diversification can generate aggregate fragility in production networks.

To understand the relationship between the firm’s diversification decisions and

supply chain fragility, I study the properties of a stylised production model.

In equilibrium, correlation in the risk of disruption among suppliers generates

fragility via two channels. First, it directly introduces endogenous correlation

in downstream firms’ risk, which amplifies through the production network.

This increases the probability of cascading failures, in which the entire produc-

tion network is unable to produce. Second, it indirectly affects firms’ decisions
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by reducing the expected marginal gain from adding a source of input goods.

The latter channel leads to firms diversifying increasingly less, such that small

increases in the expected disruption probability can yield fragile production

networks.

The role that production networks play in determining economic outcomes

has been long recognised. As far back as Leontief (1936), economists have stud-

ied how networks in production can act as aggregators of firm-level activity.

Following a foundational paper by Hulten (1978), which showed that the first

order impact of a productivity shock to an industry is independent of the pro-

duction network structure, macroeconomics has since de-emphasised this role

(Baqaee and Farhi, 2019, p. 2). However, more recently, Baqaee and Farhi (2019)

illustrated how the structure of the production network can aggregate micro

shocks via second order effects.1 Furthermore, the degree of competition in an

industry also interacts with the production network to aggregate shocks, which

can lead to cascading failures (Baqaee, 2018). Once established that production

networks play a central role in aggregating shocks, two natural questions arise.

First, which networks can we expect to observe, given that firms endogenously

and strategically choose suppliers? Second, are these endogenous network for-

mations responsible for the growth or fragility that large economies display?

These questions fuelled a number of recent papers studying endogenous pro-

duction network formation. Focusing on growth, Acemoglu and Azar (2020)

show that endogenous production networks can be a channel through which

firms’ increased productivity lowers costs throughout the supply chain and al-

lows for sustained economic growth. In parallel, a vast literature dealt with

studying the role of endogenous production networks and firm incentives in

determining fragile or resilient economies. Erol and Vohra (2014) showed that

in networks with strategic link formation, systemic endogenous fragility arises

if the shocks experienced by firms are correlated. Later work, by Amelkin and

Vohra (2020), shows that uncertainty in the time of production is crucial in de-

1These results build on a vast literature, for example Gabaix (2011); Acemoglu et al. (2012);
Carvalho et al. (2020); Baqaee and Farhi (2019); Carvalho and Tahbaz-Salehi (2019))
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termining whether production networks in equilibrium are sparse and, hence

fragile. Finally, Elliott, Golub and Leduc (2022) illustrate how complexity in the

production process can also be a key driver of endogenous fragility in produc-

tion networks. 2

A less understood link is that between the correlation of risk within the sup-

ply chain, how firms deal with it, and the consequences this has on the econ-

omy. Kopytov et al. (2021) studied the effect of uncertainty in endogenous pro-

duction network formation on firms’ productivity and business cycles. They

find that higher uncertainty can lead to lower economic growth. In contrast,

this paper focuses on the role of uncertainty in generating endogenous fragility

to cascading failures using a more stylised production network model, akin to

that studied by Elliott, Golub and Leduc (2022). In line with the existing litera-

ture, in the model, small idiosyncratic shocks can be massively amplified. The

degree of amplification depends on the equilibrium behaviour of firms. This

phenomenon holds true in vertical economies producing simple goods. This

paper extends the analysis of production network formation to an environment

in which firms aim to minimise risk while accounting for correlation between

suppliers. To do so, I develop a tractable analytical framework that describes

the propagation of idiosyncratic shocks through the supply chain when firms

make sourcing decisions endogenously in an imperfect information environ-

ment. The model describes the evolution of risk through the supply chain as

a dynamical system over its depth. The social planner solution shows that en-

dogenous fragility can impose large welfare losses. Importantly, these losses

might be discontinuous: an arbitrarily small increase in the correlation of risk

among basal firms can generate large welfare losses. Finally, I study a bench-

mark case where firms have perfect information over idiosyncratic risk. In this

case, despite each individual firm being able to achieve a smaller disruption

risk, the supply chain is maximally fragile and there is a high probability of

2The literature on production networks is vast and it is unfortunately impossible to give a
fair overview in this introduction. For a more comprehensive review of the literature, I refer
the reader to Carvalho and Tahbaz-Salehi (2019) and Amelkin and Vohra (2020)
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large disruptions.

The remainder of the paper is structured as follows. Section 1 discusses the

assumptions on the supply chain disruptions and the problem of the firm, and

establishes the results that allow to analyse firm sourcing decisions. Section

2 derives the law of propagation of the disruption events through the supply

chain. Section 3 establishes the firm’s optimal sourcing strategy and how this

endogenously determines the fragility of the supply chain. These results are

then compared, in Section 4, to the social planner solution to determine the

welfare losses induced by the firm’s endogenous decisions. Finally, in Section 5,

the role of imperfect information is isolated by solving the model under perfect

information.

1 Model

1.1 Production Technology and the Firm Objective

The economy produces K + 1 goods, indexed by k ∈ {0, 1, . . . K}. Each firm

produces a single good and each good is produced by mk firms. Production

of the basal good k = 0 does not require any input, but, it is at risk of random

exogenous disruptions in the production process. A disrupted basal firm is un-

able to deliver its good as input to downstream producers. The economy is

vertical as each downstream good k > 0 requires only good k − 1 as input. If

a firm producing good k is unable to source its input good k − 1, the firm is

itself disrupted and hence unable to deliver downstream. In other words, the

i-th firm producing good k, indexed by (k, i), is able to produce if at least one

of its suppliers is able to deliver, namely, not all of its suppliers are disrupted.

To avoid being disrupted, the firm chooses which firms to source from, among

the producers of its input good. In other words, letting Dk be the random set of

disrupted firms in layer k and Sk,i the set of suppliers of firm (k, i), we can say

that (k, i) ∈ Dk if and only if all of its suppliers (k − 1, j) ∈ Sk,i are in Dk−1. I

refer to the set of the firm’s suppliers Sk,i as its sourcing strategy. The disruption
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events are random and the probability that a firm is disrupted can be written as

Pk,i := P
(
(k, i) ∈ Dk

)
= P

(
Sk,i ⊂ Dk−1

)
. (1)

Figure 1 illustrates this mechanism.

S1 S2 S1 S2

Figure 1: The supply chain is depicted in the left panel. The left firm is sourcing its input good
from all three suppliers, S1, while the right firm only from the latter two, S2. As a disruption
occurs, some upstream firms are unable to supply the input good (white box). Unlike the left
firm, the right firm is unable to source its inputs and is hence disrupted.

If a firm is not disrupted, it obtains an exogenous profit π. Implementing a

given sourcing strategy costs the firm C
(
|Sk,i|

)
. The cost C is assumed to be

increasing in the number |Sk,i| of suppliers. The problem of firm (k, i) is then to

maximise the expected profit3

Πk,i(Sk,i) =
(
1− P

(
Sk,i ⊆ Dk−1

))
π − C

(
|Sk,i|

)
(2)

by picking a sourcing strategy Sk,i. Before moving on with the solution of the

model, it is useful to discuss the assumptions presented in this section. The pro-

duction game is highly stylised: first, firms do not adjust prices but only quanti-

ties, such that failure to produce only arises in case no input is sourced; second,

they are able to obtain profits by simply producing; third, contracting with new

suppliers has a cost. There are both theoretical and empirical reasons behind

these choices. Theoretically, a simpler model allows us to isolate the interplay

between the variables of interest: correlation in the risk of suppliers, supply

chain opacity, and endogenous production network fragility. Empirically, these

assumptions capture well the rationale behind firms’ multisourcing. There is

strong evidence that firms, first, when faced with supply chain shocks, adjust

quantities rather than prices in the short run (Jiang, Rigobon and Rigobon, 2022;
3The expectation is taken over the random set Dk−1.
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Lafrogne-Joussier, Martin and Mejean, 2022; di Giovanni and Levchenko, 2010;

Macchiavello and Morjaria, 2015), second, that production shutdowns can have

significant costly (Hameed and Khan, 2014; Barrot and Sauvagnat, 2016), and

third, that fostering relationships with suppliers is costly, but important in guar-

anteeing operational performance (Cousins and Menguc, 2006). The model es-

tablishes a link between these issues faced by firms when choosing a sourcing

strategy and the fragility of the production network.

1.2 Imperfect Information and Ex-Ante Symmetry

The supply chain is opaque: firms cannot observe the sourcing decisions of

their potential suppliers before making their own. Furthermore, firms do not

know how risky individual basal producers are, nor how their risk is correlated.

Yet, firms know the distribution from which the probabilities of disruption in

the basal layer are drawn. To motivate this assumption, recall the introductory

example of Hurricane Laura. A downstream firm producing PP, might not be

able to trace back the production steps from its input to individual polymer

producers in Louisiana or Texas, and, hence, the exact exposure of its produc-

tion process to hurricanes. Yet, it can estimate the aggregate risk the polymer

industry faces in the region. Given this information about the basal layer and

their own depth k in the production network, firms can derive the distribu-

tion of risk among their suppliers and make sourcing decisions based on it. By

symmetry, the risk of two firms downstream sourcing from the same number

of suppliers is ex-ante identical, albeit possibly correlated. The following two

assumptions formalise this idea. Introduce

Xk,j :=

1 if (k, j) is disrupted and

0 otherwise.
(3)

Assumption 1. Fix an arbitrary measure ν over [0, 1]. The probabilities P0,j of disrup-

tions in the basal layer are sampled from ν. I assume ν is observed by all firms, while
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P0,j are hidden.

Going back to the example of polymer producers, under this assumption,

downstream PP producers understand how hurricane risk can impact the pro-

duction of their input good, via ν, yet, they cannot estimate the risk that indi-

vidual polymer producers face since they do not observe P0,j .

Assumption 2. If there are multiple sourcing strategies that yield the same expected

profit, the firm picks one with equal probability.

Proposition 1. Under these assumptions, in each downstream layer k ≥ 1, disruption

events

Xk,1, Xk,2, Xk,3 . . . Xk,mk
,

are exchangeable, that is, their distribution is invariant under permutation.

Proposition 1, proven in Appendix B.1, asserts that, from the point of view

of the firm, all suppliers are ex-ante identical, yet their risk might be corre-

lated. Hence, the profit of the firm depends exclusively on how many suppli-

ers it chooses, rather than which suppliers it chooses. Then, a firm producing

good k can first infer the distribution of the number Dk−1 := |Dk−1| of dis-

rupted firms among its potential suppliers and then choose the optimal num-

ber sk,i := |Sk−1,i| of firms from which to source its input good. Furthermore, by

symmetry, all firms in layer k choose the same number sk of sources, that is,

sk,i = sk for all i. (4)

As a result, the sourcing strategies Sk,i and Sk,j of any two firms i and j are such

that their disruption probabilities Pk,i and Pk,j are identically distributed4.

4This approach is widely used in the study of random graphs, see, for example, Kallenberg
(2005); Diaconis and Janson (2007)
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2 Disruptions Propagation

Building on the mechanisms behind firms’ disruptions introduced above, this

section studies how these disruptions propagate through the supply chain. To

do so, I consider the case in which the numbermk of firms in each layer k grows

large. To study the limit, it is first necessary to characterise how the sourcing

relations Sk,j form as the number of firms in each layer increases.

Assumption 3. As a new firm is introduced in layer k, it starts establishing relations

with its sk suppliers. As soon as it pairs with a supplier, a new firm is introduced

among the producers of its input good k − 1, which, in turn, selects its sources. This

procedure continues recursively until all firms realise their sourcing strategy sk.

Indexing by n the n-th step of this procedure, this section focuses on the

limit as n → ∞. Every new firm introduced in the basal layer has a disrup-

tion probability that is ν-distributed, hence, the new firm is ex-ante identical

to existing firms. This ensures that, as n → ∞, Assumption 1 is satisfied and

the downstream sourcing decisions s1, s2 . . . are unaffected. This, allows us to

simply consider the problem of the representative firm in layer k.

To analytically characterise the disruption propagation through the produc-

tion network, the only missing piece is the distribution ν of the disruption prob-

abilities in the basal layer. As mentioned in the previous section, I assume that

basal firms fail with a not necessarily independent probability P0. We can model

this by assuming that P0 follows a Beta distribution.

Assumption 4. The probability of a disruption in the basal layer follows

P0 ∼ ν0 ≡ Beta for all j. (5)

The Beta distribution allows to flexibly model shocks that might happen due

to the spacial or technological proximity of basal producers, which cannot be di-

versified. Consider, for example, how oil extraction plants must be located near

oil reserves and are hence all subject to correlated weather shocks that might
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force them to shut down. In this case, despite the small expected probability

that an individual firm is disrupted, as a hurricane is a rare occurrence, disrup-

tions are highly correlated, as all firms are vulnerable to the same hurricane.

To keep track of the expected disruption probability and the correlation of risk

through the layers, I introduce the following alternative parametrisation of the

Beta distribution.

Definition 1. Let µ and ρ be respectively the mean and the overdispersion of a Beta

distribution with shape parameters α and β, defined by

µ :=
β

α + β
and ρ :=

1

1 + α + β
. (6)

I write P ∼ Beta(µ, ρ).

Given Assumption 4, the following result links the probabilities of experi-

encing disruption from upstream suppliers of k to downstream producers k+1.

Definition 2. A random variable Y follows a BetaPower distribution, with mean µ,

overdispersion ρ, and power s if it can be written as Y = Xs where X follows a Beta

distribution with mean µ and overdispersion ρ.

Proposition 2. If the disruption probability Pk among suppliers of good k follows a

BetaPower distribution, so does the downstream probability Pk+1.

The proof is provided in Appendix B.2. Proposition 2 guarantees that the

distribution of disrupted firms will remain in the same distribution family as

risk amplifies through the production network. This result allows us to de-

scribe disruption propagation in the supply chain by mapping the evolution

of the parameters µk and ρk through the layers. Furthermore, it allows firms

to estimate µk and ρk and use this to determine the optimal sourcing strategy

sk+1. It is useful at this point to give an interpretation of µk and ρk in the con-

text of our model. The parameter µk is the average failure probability of firms

in layer k. The parameter ρk tracks the degree of correlation in the disruption

of firms operating in layer k. I illustrate this in Figure 2. This figure shows
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the distribution of the disruption probability Pk+1 among downstream firms

in the case the firm has a single supplier (dotted lines) or two suppliers (solid

line). For low overdispersion, ρk = 0.01, the suppliers’ disruptions are weakly

correlated and the downstream disruption probability is concentrated around

the average µk. If firms contract an additional supplier, the distribution of fail-

ures decreases and remains concentrated around the average. As ρk increases,

the suppliers’ disruption events become more correlated and the downstream

disruption probabilities become fat-tailed, that is, a significant fraction of firms

is likely to be disrupted and, as a consequence, diversification is ineffective.

If firms contract an additional supplier the average disruption probability de-

creases, but a large disruption probability remains.
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Figure 2: Distribution of disruption probabilities of downstream firms for different levels of
upstream correlation ρk, in the cases of single sourcing (dotted) and multisourcing (solid). In
both cases µk = 1/2.

Having established the link between the disruptions of layer k to layer k+1,

I now turn to the analysis of how these propagate through the whole supply

chain, before studying how firms make decisions endogenously. The following
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result recursively connects downstream distributions with upstream sourcing

decisions and initial conditions.

Proposition 3. The average disruption probability between one layer k and the next

k + 1 depends on the sourcing strategy sk+1 via

µk+1 =

η(sk+1, Sk) µk if sk+1 > 0,

1 otherwise,
(7)

where Sk :=
∏k

j=1 sj is the diversification level up to layer k and η is the “risk reduction

factor”, which is given by

η(sk+1, Sk) =

(
µ0

1− ρ0
ρ0

+ Sk

)Sksk+1

/(
1− ρ0
ρ0

+ Sk

)Sksk+1

=

(
µ0

ρ0
1−ρ0

+ Sk

ρ0
1−ρ0

+ Sk

)(
µ0

ρ0
1−ρ0

+ Sk + 1
ρ0

1−ρ0
+ Sk + 1

)
. . .

(
µ0

ρ0
1−ρ0

+ Sksk+1 − 1
ρ0

1−ρ0
+ Sksk+1 − 1

)
.

(8)

This is proven in Appendix B.3. The risk reduction factor η(sk+1, Sk) gov-

erns how the firm’s choice sk+1, the choices along the firm’s production chain

Sk, and the basal conditions µ0, ρ0 affect the expected number of disruptions

downstream. This interplay is illustrated in the following figures.

Figure 3 shows how the risk reduction factor varies with basal correlation ρ0

for different sourcing strategies sk, fixing the upstream diversification of Sk = 2.

If correlation ρ0 in the basal layer grows, to obtain a given level of risk reduction

η, firms producing good k need to source more suppliers. If ρ0 → 1, diversifi-

cation becomes impossible, as η → 1 and µk+1 → µk for any sourcing strategy

sk+1.
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Figure 3: Risk reduction factor µk+1/µk at different basal overdispersion levels ρ0 and for dif-
ferent sourcing strategies sk+1. Sk = 2.

As the above, Figure 4 shows the response of the risk reduction factors to

different levels of basal correlation, but instead of varying the strategy sk of the

firm, it varies the level of upstream diversification Sk. For low levels of basal

correlation ρ0, more upstream diversification Sk allows downstream producers

to achieve lower risk with fewer suppliers. Yet, there is a level of basal correla-

tion after which more diversification is detrimental for the downstream firm, as

this high upstream diversification simply exacerbates tail risk. This represents

a crucial externality the upstream suppliers impose on downstream producers.

For a low level of correlation, sourcing downstream represents a positive ex-

ternality downstream. This externality shrinks as correlation increases until it

becomes a negative externality. Section 4 explores the welfare consequences of

this mechanism.
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Figure 4: Risk reduction factor µk+1/µk at different basal overdispersion levels ρ0 and for dif-
ferent upstream diversification levels strategies Sk. sk+1 = 2.

3 Firm Optimal Diversification and Equilibrium

The mechanics of disruption propagation, derived in the previous section, de-

termines the firm’s desired sourcing strategy and, as a consequence, its optimal

sourcing strategy. This section derives such optimal strategies. Importantly,

due to Proposition 1, all firms in a given layer are identical before the shock

and so is their optimisation problem. We can hence focus on the problem of

the representative firm in layer k + 1: to choose how many suppliers in layer

k to source from, based on the inferred distribution of their probability of ex-

periencing a disruption event. This, in turn, is fully determined by the average

disruption probability µ0, the correlation ρ0 of the disruptions, and the sourc-

ing strategies {s1, s2, . . . sk} of the representative firms upstream. Henceforth, I

assume firms face quadratic costs of sourcing, with cost parameter c, such that
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expected profits (2) can be written as

Πk(s) =
(
1− Es

[
Pk

])
π − c

2
s2, (9)

The optimisation problem of the firm is to then choose the optimal sourcing

strategy

sk = arg max
s∈{0,1,2,...}

Πk(s). (10)

3.1 Limit Case: Uncorrelated Disruptions

Before turning towards the general framework, I first analyse a limit case in

which suppliers’ risk is not correlated, that is ρ0 → 0. This limit case gives a

useful interpretation of the incentives behind multisourcing and allows us to

establish a benchmark against which to study the introduction of correlated

shocks.

Proposition 4. If risk among basal firms is uncorrelated, that is ρ0 → 0, disruption

events in layer k are independent and happen with probability

µk+1 = µ
sk+1

k . (11)

Proof. Follows immediately from Pk → µk as ρ0 → 0.

As in this case Es[Pk+1] = µs
k, profits (9) are given by Πk+1(s) =

(
1− µs

k

)
π −

c
2
s2. Using this, we can derive the optimal sourcing strategy sk of a firm pro-

ducing good k. A firm with s suppliers contracts an extra one only if doing so

yields a positive marginal profit

∆Πk+1(s) := Πk+1(s+ 1)− Πk+1(s)

= µs
k(1− µk)π − c

(
s+

1

2

)
.

(12)

It is easy to check that ∆Πk+1(s) is strictly decreasing and that it has a unique

root. Hence, the optimal number of suppliers sk+1 is the smallest integer s for
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which the expected marginal profit is negative, that is ∆Πk+1(s) < 0.

Definition 3. Let s̃k+1 be the unique real root of ∆Πk+1. I refer to this quantity as the

“desired sourcing strategy” of the firm.

The optimal sourcing strategy is then given by

sk+1 =

⌈s̃k+1⌉ if s̃k+1 > 0 and

0 otherwise.
(13)

Proposition 5. Introduce the threshold

µ0 := 1− rc (14)

where rc := c/2
π

is the real marginal costs of an additional supplier. If the average

disruption probability µk is larger than µ0, the downstream firm does not source any

inputs, that is sk+1 = 0.

Proof. Suppose a firm optimally does not source any inputs. This implies that

the marginal benefit of adding the first supplier is negative, namely ∆Πk+1(0) <

0, which yields the desired inequality.

As expected, the desired s̃k+1 and the optimal sourcing strategy sk+1 are

determined by the upstream average disruption probability µk and the real

marginal costs of contracting a new supplier rc. Figure 5 illustrates the ef-

fect these two conditions have on the optimal sourcing strategy. First, higher

real marginal costs rc reduce the firm’s number of sources. Second, as the the

upstream average disruption probability µk increases, initially, the firm seeks

higher diversification, until a level above which the desired sourcing strategy

starts decreasing steeply.

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

3

5

7

9

11

13

15

Upstream average disruption probability µk

O
pt

im
al

so
ur

ci
ng

st
ra

te
gy

s k
+
1 rc = 0.001

rc = 0.01

Figure 5: The desired s̃k+1 (dotted) and optimal sk+1 sourcing strategy (solid) as a function of
the upstream average disruption probability µk

Having studied how risk affects the firm’s optimal sourcing, I now look at

the opposite channel, that is, how the firm sourcing strategy affects risk propa-

gation. To do so, we think of the average disruption probability

µk+1 = µ
sk+1(µk)
k (15)

from suppliers to downstream producers as a dynamical system, not in time

but in layers k ∈ {0, 1, 2 . . .} of the supply chain. Given a basal condition µ0, a

fixed point µ̄ of the map (15) is then a level of disruption probability µ̄ such that

all firms downstream of a layer k single-source, namely sl = 1 for all l ≥ k,

and hence all share the same disruption probability µl ≡ µ̄. When looking

at the production network through this lens, a natural question arises: which

basal levels of disruption probabilities µ0 are not endogenously diversified by

the production network, that is µ̄ ≥ µ0? To answer this, first I characterise the

downstream disruption probability µ̄.

Proposition 6. The downstream disruption probability µ̄ satisfies

µ̄ (1− µ̄) ≤ 3rc. (16)

17



Proof. A steady state is attained at level k̄ if sk̄ = 1. This implies that the

marginal benefit of multisourcing is negative ∆Πk̄(1) ≤ 0. This yields the de-

sired inequality.

Corollary 6.1. Introduce the critical threshold

µc :=
1

2
+

√
1

4
− 3rc. (17)

If µ0 > µc, the endogenous supply chain is unable to diversify risk, that is µ̄ ≥ µ0.
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This result links the firm real marginal costs

of sourcing rc and the production network risk.

As relative marginal costs increase, the capacity

of the production network to endogenously di-

versify decreases and firms’ under-diversification

yields endogenous fragility. Notice that, compar-

ing the threshold µc of endogenous diversifica-

tion with the threshold µ0 of firm shutdown, illus-

trated in Figure 6, for some levels of basal prob-

ability of disruption µ0, despite no firm shutting

down production µ0 < µ0, the production network as a whole is still unable

to endogenously diversify risk µ0 > µc. This is true even in this special case,

where the firms’ risk is uncorrelated. In the next section, I introduce correlation

risk ρ > 0 and investigate how doing so changes the dynamics illustrated here.

3.2 Optimal Sourcing with Correlated Distributions

If disruption events are not independent, that is ρ0 > 0, the risk among suppli-

ers throughout the production network is correlated, which affects the firm’s

optimisation incentives. In this case, the problem of a firm in layer k + 1 is still

to choose the number of suppliers sk+1 ∈ {0, 1, 2 . . .} that maximises the profits

Π, but, by Proposition 3, the firm’s disruption probability is given by the aver-

age disruption probability of its suppliers µk multiplied by a factor η(sk+1, Sk)
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which depends on the upstream diversification Sk. As in the limit case analysed

in the previous section, the firm will increase diversification as long as the ex-

pected increase in profits obtained by adding an additional supplier outweighs

the costs of contracting that additional supplier. These expected marginal prof-

its are given by

∆Πk+1(sk+1) =
(
η(sk+1, Sk)− η(sk+1 + 1, Sk)

)
µkπ − c

(
sk+1 +

1

2

)
. (18)

The characterisation of the optimal sourcing strategy is analogous to the limit

case without the correlation discussed above. s̃k+1 ∈ R is the desired sourcing

strategy for which the marginal benefits and marginal costs of diversification

are equal, such that ∆Πk+1(s̃k+1) = 0. As the marginal profits are strictly de-

creasing in the number of suppliers (see Appendix B.5), the firm will, as in the

limit case, choose its optimal sourcing strategy as sk+1 = ⌈s̃k+1⌉ if s̃k+1 > 0 and

chooses not to source any inputs otherwise. Figure 7 illustrates how the opti-

mal sourcing strategy sk+1 changes with upstream correlation ρk for different

levels of relative costs rc. As upstream correlation increases, the firm increases

its sources to diversify risk. Yet, for large levels of correlation, the disruption of

an additional source of the input good is likely correlated to a disruption among

the firm’s existing suppliers, which reduces the firm’s incentive to multisource.

As disruptions among suppliers become perfectly correlated, ρk → 1, the firm

sources from a single supplier.
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Figure 7: The desired s̃k+1 (dotted) and optimal sk+1 sourcing strategy (solid) as a function of
the upstream correlation ρk

To study the ramifications this endogenous channel has on the supply chain

formation and its fragility, in the following I analyse the propagation of risk

through the layers. As above, we can view the mapping of the probability of

disruption between layers as a dynamical system through the layers of the pro-

duction network. A steady state of the dynamical system is then an average

disruption probability µ̄ := µk̄ in some layer k̄ such that all downstream layers

l ≥ k̄ have the same average disruption probability µl ≡ µ̄. This can occur in

two cases. Either the firm in layer k̄ does not source, that is sk̄ = 0, or it single

sources, that is sk̄ = 1. The former case is trivial: the production network shuts

down and all downstream firms do not produce, such that µ̄ = 1. In the lat-

ter case, by single sourcing, the average disruption probability in layer k̄ is the

average disruption probability among the suppliers k̄ − 1, as the risk reduction

factor η(sk, Sk−1) = 1 if sk = 1. Because the layers are symmetric, the firms

in the downstream layer k̄ + 1 face the same problem as those in layer k̄, such

that they endogenously single source, that is sk̄+1 = 1. Inductively, this holds

true for all l ≥ k̄, hence µl ≡ µ̄. Hereafter, I refer to the situation in which the

downstream average disruption probability is greater than the basal one, that is

µ̄ ≥ µ0, as endogenous fragility. Figure 8 shows the downstream average disrup-

tion probability µ̄ as a function of basal average disruption probability µ0, for
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cases in which basal correlation ρ0 is low or high. In both cases for large possible

initial levels of basal average disruption probability µ0 the supply chain is en-

dogenously resilient, as µ̄ < µ0. But, as in the uncorrelated cases studied above,

there is a threshold of average basal disruption probability µ0 > µc for which

the firm is endogenously fragile and µ̄ ≥ µ0. The threshold effect is discontin-

uous. At µ0 ≡ µc an arbitrarily small increase in µ0 can lead to discontinuously

large downstream failure probabilities µ̄.
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Figure 8: Downstream average disruption probability as a function of basal average disruption
probability for ρ0 = 0.4

The threshold µc is decreasing in the basal level of correlation ρ0, as illus-

trated in Figure 9. This implies that a small increase in basal correlation leads

to discontinuous increases in the downstream average disruption probability.

This results highlights an additional channel to that studied by Elliott, Golub

and Leduc (2022) by which supply chains can be endogenously fragile: even

if the expected failure probability µ0 of basal producers remains unchanged,

an increase in the correlation of their disruptions ρ0, can endogenously in-

duce large fragilities. This result highlights how phenomena that can lead to
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increases in risk among upstream producers, such as offshoring, climate dis-

ruptions, and economic agglomeration, can generate under-diversification and

endogenous fragility, even as they leave individual producer’s risk unchanged.
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Figure 9: Critical level of basal average disruption probability µc as a function of the basal
correlation.

4 Social Planner Problem

To establish a benchmark to which one can compare the competitive equilib-

rium analysed above, in this section I solve the model from the perspective of

a social planner. The social planner attempts to, on the one hand, minimise

the number of firms expected to fail, and, on the other, minimise the number

of costly sourcing relations. To develop a useful benchmark, I define a social

planner problem that can be meaningfully compared to the decentralised firm’s

problem by making the following two assumptions.

Assumption 5. The social planner knows the distribution of failure in the basal layer

P0 ∼ Beta(µ0, ρ0) and makes a decision before P0 is realised.
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Assumption 6. As in the firm problem, I consider the limit in which the number of

firms producing each good goes to infinity, that is n → ∞. This allows the social

planner to recursively, from the last layer K upwards, assign suppliers Sk,i such that

there are sufficiently many firms so that no two firms share suppliers Sk,i ∩ Sk,j = ∅.

Figure 10

To understand the intuition behind Assumption 6,

consider the possible supplier overlap illustrated in Fig-

ure 10: if a supplier has multiple downstream clients

(dashed box), the social planner can always rewire a

link towards a supplier without downstream clients

(solid box). By doing so, the social planner can “di-

versify away” all the correlation that arises due to the

network structure. Hence, the only source of risk in the model is represented

by the shutdowns experienced by firms in the basal layer, which happen with

non-idiosyncratic probabilities P0 (Assumption 5). Combining Assumptions 5

and 6, the social planner problem is then to maximise average expected payoffs

W ({Sk,i}) :=
1

K

K∑
k=0

lim
n→∞

1

mk(n)

mk(n)∑
i=1

(
1− P

(
Sk,i ⊂ Dk−1

))
π − c

2
|Sk,i|2 , (19)

by choosing a sourcing strategy Sk,i ⊆ {1, 2, . . .} for each firm in each layer

such that Sk,i ∩ Sk,j is empty for all i, j. The social planner problem can be

further simplified by noticing that, given that all firms in layer k are identical

if establishing an additional path from a firm in layer k to a basal firm has

positive marginal benefits, then it has positive marginal benefits for all firms

in layer k which share the same number of paths to basal firms. Hence, as

in the decentralised firms’ problem, the social planner can choose the optimal

number of sources in each layer, let the firms source at random, and finally

disentangle any overlapping paths. Using this, the social planner problem can

be formulated recursively, by letting Vk be the maximal average welfare from
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layer k to the last layer K. This can be recursively defined as

Vk(Pk−1) = max
sk

{(
1− E

[
P sk
k−1

])
π − c

2
s2k + E

[
Vk+1(Pk)

]}
(20)

where the state Pk−1 ∼ BetaPower(µ0, ρ0, s1s2 . . . sk−1) is the fraction of dis-

rupted firms, which evolves as

Pk = P sk
k−1. (21)

The average welfare in layer K + 1 is given by VK+1(PK) = 0, since firms in the

last layer are never sources to other firms, and an initial state condition P0 ∼
Beta(µ0, ρ0). This problem can be solved using standard backward induction

techniques (see Appendix C). The optimum average social welfare (19) can then

be written as

V1(P0) = max
s1,s2,...sK−1

W ({s1, s2, . . . sK−1}). (22)

Letting {spk}Kk=1 be the socially optimal sourcing strategies sequence and

{µp
k}Kk=1 be the expected disruption in each layer given by such sourcing strate-

gies, we can compute the change in downstream risk compared to the decen-

tralised case. Figure 11 shows this difference µ − µp for the same two cost

regimes. If pairing costs are low, the social planner achieves marginally lower

risk levels of downstream risk for most initial conditions. If initial basal cor-

relation ρ0 is sufficiently large and the average basal disruption probability µ0

is sufficiently low, the firms over-diversify compared to the socially optimum

µ < µp. If relative pairing costs are high, the social planner is able to diversify

risk around the critical threshold µc, such that the decentralised equilibrium

induces inefficiently high levels of average downstream disruption probabil-

ity, that is µ > µp. This result implies that the cascading failures that occur

around the critical threshold are fully attributable to firms’ endogenous under-

diversification motives and are hence inefficient.
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Figure 11: Change in downstream expected failure probability between the firms’ µ and the
social planner µp equilibrium, given different initial conditions µ0 and ρ0 in a low (left) and a
high (right) relative pairing costs regime.

The differences between the firms’ sourcing strategies and the social opti-

mum generate welfare losses in the production network. Letting W be the av-

erage firm profit in the decentralised case andW p be the average profit achieved

by the social planner, Figure 12 illustrates the welfare loss due to the firms’ di-

versification decisions W −W p. The welfare loss is largest around the critical

value µc, where the production network is endogenously fragile. At these lev-

els of risk, firms’ upstream firms’ diversification incentives are weak, which

creates large downstream resilience externalities. Crucially, both an increase in

basal risk µ0 and an increase in basal correlation ρ0 can generate discontinuous

welfare losses.
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5 The Role of Opacity

So far I assumed that firms cannot observe the realisation of the supply chain

and the basal disruption probabilities P0 when making sourcing decisions. To

understand how this assumption affects optimal decisions and fragility within

the supply chain, I now analyse the supply chain under perfect information.

The following assumption clarifies what is meant by perfect information in the

context of the model.

Assumption 7. In a regime of perfect information, each firm i in level k is able to

perfectly estimate the disruption probability of each potential supplier and the full cor-

relation structure of the disruption events.

Under this perfect information regime, the firm can assign correct probabil-

ities to its own disruption risk

P
(
Sk,i ⊂ Dk−1

)
for all possible sourcing strategies Sk,i.
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The firm can hence rank suppliers by the marginal reduction in risk they pro-

vide and source from the “safest” sk desired suppliers. As all firms downstream

are ex-ante identical, the marginal benefits of diversification experienced by

firm (i, j) are the same as those of all other firms in layer k, which implies that,

in equilibrium, all firms in layer k will employ the same sourcing strategy, given

that they are ex-ante identical. This outcome is beneficial for any single firm,

but detrimental to the stability of the production network. The following two

propositions formalise this.

Proposition 7. Compared to the opaque scenario, for the same number of sources, firm

(k, i) is (weakly) less likely to be disrupted.

Proof. Given the same number of sources, the firm with perfect information

minimises its disruption risk with fewer constraints than in the opaque sce-

nario.

Proposition 8. Under perfect information, the supply chain is maximally fragile: ei-

ther all firms fail or none do.

Proof. Without loss of generality, assume basal firms are sorted by their disrup-

tion risk P0,1 > P0,2 > . . .. Suppose a firm in layer k = 1 chooses to contract

s1,i suppliers. In choosing which suppliers to source from, the optimal choice is

then to pick the first s1,i-th basal producers, namely

S1,i = {1, 2, . . . s1,i}. (23)

By symmetry, this is also the optimal choice of all other firms in layer k = 1, such

that S1,i = S1,j for all i, j. This further implies that disruption events in layer

k = 1 are perfectly correlated, X1,i = X1,j for all i, j, as each two firms share all

suppliers. This in turn implies that, regardless of the diversification strategy,

all firms downstream k > 1 experience perfectly correlated distribution events.

Hence

Xk,i = Xk,j for all firms i, j and layers k > 0. (24)
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Supply chain opacity, despite preventing firms from implementing an opti-

mal diversification strategy, leads to more resilient supply chains. Hence, policy

efforts to improve supply chain resilience via transparency might backfire if not

paired with efforts to coordinate diversification of firms’ sources.

6 Conclusion

Deeper and more globalised supply chains are more vulnerable to widespread,

correlated disruptions. This paper studies how firms diversify sourcing risk

when disruptions are correlated, and how this affects the endogenous forma-

tion of supply chains. I show that, as disruption correlation rises, a firm sources

its input good from more suppliers to diversify the risk of a disruption. Yet,

there is a level of correlation after which the expected risk reduction of adding

an additional supplier is small, hence, the firm starts reducing its number of

suppliers and lowers its diversification. This mechanism can create two forms

of externalities imposed by upstream suppliers onto downstream producers.

When firms upstream choose to under-diversify, this generates increased dis-

ruption risk downstream. When firms upstream choose to over-diversify, this

generates a high correlation in their disruption risk, which has consequences

for downstream diversification incentives. Due to this, I show that the sup-

ply chain is endogenously fragile to disruption correlation, that is, small in-

creases in the correlation among upstream disruptions can trigger large under-

diversification throughout the supply chain. This can leave the economy vul-

nerable to unlikely disruption events.

To construct a welfare benchmark for these results, I then solve the equiv-

alent social planner problem. I show that a social planner can design a sup-

ply chain that is resilient to such correlated shocks. This result has two conse-

quences. First, it illustrates that the fragility derives from the individual firm’s

diversification strategy and the risk externalities it induces downstream. It is

hence entirely endogenous to the supply chain formation. Second, it implies

the presence of large and discontinuous welfare losses. Finally, I study the role
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of imperfect information on supply chain formation. I show that, in the pres-

ence of perfect information on the structure and risk of the supply chain, firms

are better able to individually diversify risk, yet, in doing so, they choose iden-

tical suppliers, which renders the supply chain vulnerable to small upstream

disruptions. This suggests that recent efforts in increasing firms’ visibility of

the supply chain, despite reducing individual firms’ supply chain risk, might

have the unintended consequence of making supply chains more fragile.
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A Notation and Distributions

This appendix introduces standard notation and definitions that will be used

throughout the following appendices.

For x ∈ R and n ∈ N, I denote the rising factorial as

xn := x(x+ 1)(x+ 2) . . . (x+ (n− 1))︸ ︷︷ ︸
n terms

. (25)

For non-integer exponents n ∈ R, the definition (25) can be extended as

xn :=
Γ(x+ n)

Γ(x)
, (26)

where Γ is the gamma function.

Two properties of the rising factorial that are used below but not proven are

the additive property of the exponent

xn+m = xn(x+m)m, (27)

and that it is strictly increasing in its base

∂xn

∂x
> 0. (28)

B Omitted Proofs

This appendix contains the proofs omitted from the paper.

B.1 Proof of Proposition 1

Proving Proposition 1, requires the following Lemma.

Lemma 8.1. If the disruption events among upstream firms are exchangeable, then

the probability that a downstream firm is disrupted depends only on the number of

suppliers it picks.

33



Proof. Consider the sequence of disruption events among upstream firms

Xk,1, Xk,2, Xk,3 . . . . (29)

We assume the sequence to be exchangeable, that is,

Xk,1, Xk,2, Xk,3 . . .
d
= Xk,σ(1), Xk,σ(2), Xk,σ(3) . . . , (30)

for an arbitrary permutation of its indices σ. Fix two arbitrary finite subsets of

disruptions A = {Xk,a1 , Xk,a2 . . . Xk,an} and B = {Xk,b1 , Xk,b2 . . . Xk,bn} of size n.

Here ai, bi ∈ [m] are the indices of the original sequence corresponding to the

i-th index of the subset. Let σ be a permutation that takes elements of A to B,

namely,

σ(A) = B and σ(Ac) = Bc. (31)

Then the probability distribution over A is

P(A) = P(A and Ac taking any value)

= P(σ(A) and σ(Ac) taking any value)

then by exchangeability, = P(B and Bc taking any value) = P(B).

(32)

Now we can prove Proposition 1

Proof. The proof is done by induction. The base case k = 0 follows from As-

sumption 1, as the disruption probabilities are ν-distributed.

Assume that for some layer k − 1 the disruption events {Xk−1,i}mk−1

i = 1

are exchangeable. By Lemma 8.1 the downstream expected profits Πk,i(S) de-

pend only the number of suppliers |S|. By symmetry and Assumption 2, all

firms in layer k are then selecting a random subset of supplier from layer k − 1

with equal probability, which in turn determines their disruption risk Xk,i. This
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construction is independent of the downstream firm index i, hence

Xk,1, Xk,2 . . . , Xk,m

are exchangeable.

B.2 Proof of Proposition 2

Proof. A firm producing good k + 1 sources from sk+1 suppliers, hence, its dis-

ruption event is given by

Xi,k+1 = Xj1,kXj2,k . . . Xjsk+1
,k, (33)

where {j1, . . . jsk+1
} is an arbitrary subset of suppliers andXj,k are exchangeable

Bernoulli trials with a Pk success probability, where

Pk ∼ BetaPower.

Conditional on the underline distribution Pk of disruption probabilities, the

trials Xj,k are independent and identically distributed. Hence, we have

Pk+1 = E[Xi,k+1] = E

[
sk∏
l=1

Xjl,k

]

= E

[
E

[
sk∏
l=1

Xjl,k

∣∣Pk = pjl

]]
by conditional independence, = E

[
E
[
Xjl,k

∣∣Pk = pjl
]sk]

by independence of the draws, = E
[
E
[
Xjl,k

∣∣Pk = pjl
]]sk = P sk

k .

(34)

B.3 Mapping of risk across layers

This section derives the risk reduction factor η.
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Lemma 8.2. If Pk−1 ∼ BetaPower(m,α, β, S) for some integer S, then

Pk ∼ BetaPower(m,α, β, Ssk) (35)

where sk is the choice of suppliers in layer k.

Proof. Follows from the definition of BetaPower.

Proposition 9. The expected probability of disruption faced by a firm is given by

E
[
Pk

]
=
B
(
µ0

1−ρ0
ρ0

+ Sk−1sk, (1− µ0)
1−ρ0
ρ0

)
B
(
µ0

1−ρ0
ρ0
, (1− µ0)

1−ρ0
ρ0

) . (36)

Proof. It follows from rewriting the moment generating function of the beta

distribution as

M(t) =
∞∑
n=0

tn

n!

B(α + n, β)

B(α, β)
(37)

and noticing that Pk ∼ BetaPower(α, β, Sk−1sk).

To simplify notation, let r0 = 1−ρ0
ρ0

and

η(s, S) =
(µ0r0 + S)S(s−1)

(r0 + S)S(s−1)
(38)

which satisfies the recursion

η(s+ 1, S) = η(s, S)
(µ0r0 + Ss)S

(r0 + Ss)S
. (39)

Another property of (38) which will be use later is

∂η

∂s
= η(s, S)S

(
ψ(µ0r0 + Ss)− ψ(r0 + Ss)

)
. (40)

Corollary 9.1. From equation (40) and the fact that ψ is increasing over positive val-

ues, it follows that η is decreasing in s.

Using Proposition (9), the coefficient η allows us to write the propagation of
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risk recursively

µk+1 = η(sk+1, Sk) µk. (41)

B.4 Limit case ρ0 → 0

For the following proof I only consider non-trivial values of upstream risk µ <

µ0. If µ ≥ µ0, no firm has suppliers and the supply chain is by definition stable.

Lemma 9.1. A fixed point of the law of motion g(µ̄) = µ̄, is attained iff g̃(µ̄) ≥ µ̄.

Proof. By definition g̃(µ̄) = µ̄s̃(µ̄) and 0 ≤ µ̄ ≤ 1. Hence g̃(µ̄) ≥ µ̄ ⇐⇒ s̃(µ̄) ∈
(0, 1]. By definition s(µ̄) = ⌈s̃(µ̄)⌉ = 1, which implies that g(µ̄) = µ̄.

Now we can prove Corollary 6.1.

Proof. We seek µ, such that g̃(µ) ≥ µ, which then implies that g(µ) = µ. This

will be the case if s̃(µ) ∈ (0, 1]. This is the case if ∆Π(1) ≤ 0 and ∆Π(0) > 0,

which yields the desired inequality.

B.5 General Case, ρ0 > 0

This appendix proves the existence of an optimal sourcing in the case ρ > 0.

Proof. It is sufficient to show that ∆Π is strictly decreasing in s when ρ0 > 0. It

is convenient to rewrite η (38) as

η(s) =
Γ(r0 + S)

Γ(µ0 r0 + S)

Γ(µ0 r0 + Ss)

Γ(r0 + Ss)
. (42)

Then

∆Π(s) =
(
η(s)− η(s+ 1)

)
πµ− c

(
s+

1

2

)
, (43)

hence

∆Π′(s) = −c− µπS

(
η(s+ 1)

(
ψ(µ0r0 + S(s+ 1))− ψ(r0 + S(s+ 1))

)
−

η(s)
(
ψ(µ0r0 + Ss)− ψ(r0 + Ss)

))
.

(44)

37



Then ∆Π′(s) < 0, since ψ is increasing. Finally notice that ∆Π(−1/2) =

(η(−1/2)− η(1/2))πµ < 0 and lims→∞∆Π(s) = ∞.

C Solution of the Social Planner Problem

First, notice that the terminal condition VK is linear in PK−1, hence

E
[
VK(PK−1)

]
= VK

(
E[PK−1]

)
. (45)

In turn, this implies that Vk is linear for all k. Hence we can rewrite the value to

be a function of the state space S,

Vk(Sk−1) = max
s

{(
1− E

[
BetaPower(µ0, ρ0, Sk−1 s)

])
π − c

2
s2 + Vk(Sk−1 sk)

}
.

(46)

We can find Vk numerically. Let Ω = [m]× [mK ] for some m ∈ N and

l(s, S) :=
(
1− E

[
BetaPower(µ0, ρ0, Sk−1 s)

])
π − c

2
s2. (47)

Then, by means of backward induction we obtain a recursive expression for

V1, namely

VK(S) = max
s
l(Ω),

Vk−1(S) = max
s
l(Ω) + VK(S s),

...

V1(S) = max
s
l(Ω) + V2(S s).

(48)
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